monero/src/ringct/multiexp.cc
Kevin Barbour 85db1734e7
Remove unused variables in monero codebase
There are quite a few variables in the code that are no longer
(or perhaps never were) in use. These were discovered by enabling
compiler warnings for unused variables and cleaning them up.

In most cases where the unused variables were the result
of a function call the call was left but the variable
assignment removed, unless it was obvious that it was
a simple getter with no side effects.
2021-02-09 08:05:05 +01:00

708 lines
22 KiB
C++

// Copyright (c) 2017, The Monero Project
//
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without modification, are
// permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other
// materials provided with the distribution.
//
// 3. Neither the name of the copyright holder nor the names of its contributors may be
// used to endorse or promote products derived from this software without specific
// prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Adapted from Python code by Sarang Noether
#include "misc_log_ex.h"
#include "common/perf_timer.h"
extern "C"
{
#include "crypto/crypto-ops.h"
}
#include "common/aligned.h"
#include "rctOps.h"
#include "multiexp.h"
#undef MONERO_DEFAULT_LOG_CATEGORY
#define MONERO_DEFAULT_LOG_CATEGORY "multiexp"
//#define MULTIEXP_PERF(x) x
#define MULTIEXP_PERF(x)
#define RAW_MEMORY_BLOCK
//#define ALTERNATE_LAYOUT
//#define TRACK_STRAUS_ZERO_IDENTITY
// per points us for N/B points (B point bands)
// raw alt 128/192 4096/192 4096/4096
// 0 0 52.6 71 71.2
// 0 1 53.2 72.2 72.4
// 1 0 52.7 67 67.1
// 1 1 52.8 70.4 70.2
// Pippenger:
// 1 2 3 4 5 6 7 8 9 bestN
// 2 555 598 621 804 1038 1733 2486 5020 8304 1
// 4 783 747 800 1006 1428 2132 3285 5185 9806 2
// 8 1174 1071 1095 1286 1640 2398 3869 6378 12080 2
// 16 2279 1874 1745 1739 2144 2831 4209 6964 12007 4
// 32 3910 3706 2588 2477 2782 3467 4856 7489 12618 4
// 64 7184 5429 4710 4368 4010 4672 6027 8559 13684 5
// 128 14097 10574 8452 7297 6841 6718 8615 10580 15641 6
// 256 27715 20800 16000 13550 11875 11400 11505 14090 18460 6
// 512 55100 41250 31740 26570 22030 19830 20760 21380 25215 6
// 1024 111520 79000 61080 49720 43080 38320 37600 35040 36750 8
// 2048 219480 162680 122120 102080 83760 70360 66600 63920 66160 8
// 4096 453320 323080 247240 210200 180040 150240 132440 114920 110560 9
// 2 4 8 16 32 64 128 256 512 1024 2048 4096
// Bos Coster 858 994 1316 1949 3183 5512 9865 17830 33485 63160 124280 246320
// Straus 226 341 548 980 1870 3538 7039 14490 29020 57200 118640 233640
// Straus/cached 226 315 485 785 1514 2858 5753 11065 22970 45120 98880 194840
// Pippenger 555 747 1071 1739 2477 4010 6718 11400 19830 35040 63920 110560
// Best/cached Straus Straus Straus Straus Straus Straus Straus Straus Pip Pip Pip Pip
// Best/uncached Straus Straus Straus Straus Straus Straus Pip Pip Pip Pip Pip Pip
// New timings:
// Pippenger:
// 2/1 always
// 3/2 at ~13
// 4/3 at ~29
// 5/4 at ~83
// 6/5 < 200
// 7/6 at ~470
// 8/7 at ~1180
// 9/8 at ~2290
// Cached Pippenger:
// 6/5 < 200
// 7/6 at 460
// 8/7 at 1180
// 9/8 at 2300
//
// Cached Straus/Pippenger cross at 232
//
namespace rct
{
static inline bool operator<(const rct::key &k0, const rct::key&k1)
{
for (int n = 31; n >= 0; --n)
{
if (k0.bytes[n] < k1.bytes[n])
return true;
if (k0.bytes[n] > k1.bytes[n])
return false;
}
return false;
}
static inline rct::key div2(const rct::key &k)
{
rct::key res;
int carry = 0;
for (int n = 31; n >= 0; --n)
{
int new_carry = (k.bytes[n] & 1) << 7;
res.bytes[n] = k.bytes[n] / 2 + carry;
carry = new_carry;
}
return res;
}
static inline rct::key pow2(size_t n)
{
CHECK_AND_ASSERT_THROW_MES(n < 256, "Invalid pow2 argument");
rct::key res = rct::zero();
res[n >> 3] |= 1<<(n&7);
return res;
}
static inline int test(const rct::key &k, size_t n)
{
if (n >= 256) return 0;
return k[n >> 3] & (1 << (n & 7));
}
static inline void add(ge_p3 &p3, const ge_cached &other)
{
ge_p1p1 p1;
ge_add(&p1, &p3, &other);
ge_p1p1_to_p3(&p3, &p1);
}
static inline void add(ge_p3 &p3, const ge_p3 &other)
{
ge_cached cached;
ge_p3_to_cached(&cached, &other);
add(p3, cached);
}
rct::key bos_coster_heap_conv(std::vector<MultiexpData> data)
{
MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
size_t points = data.size();
CHECK_AND_ASSERT_THROW_MES(points > 1, "Not enough points");
std::vector<size_t> heap(points);
for (size_t n = 0; n < points; ++n)
heap[n] = n;
auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; };
std::make_heap(heap.begin(), heap.end(), Comp);
MULTIEXP_PERF(PERF_TIMER_STOP(setup));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
while (heap.size() > 1)
{
MULTIEXP_PERF(PERF_TIMER_RESUME(pop));
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index1 = heap.back();
heap.pop_back();
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index2 = heap.back();
heap.pop_back();
MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
MULTIEXP_PERF(PERF_TIMER_RESUME(add));
ge_cached cached;
ge_p3_to_cached(&cached, &data[index1].point);
ge_p1p1 p1;
ge_add(&p1, &data[index2].point, &cached);
ge_p1p1_to_p3(&data[index2].point, &p1);
MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
MULTIEXP_PERF(PERF_TIMER_RESUME(sub));
sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes);
MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
MULTIEXP_PERF(PERF_TIMER_RESUME(push));
if (!(data[index1].scalar == rct::zero()))
{
heap.push_back(index1);
std::push_heap(heap.begin(), heap.end(), Comp);
}
heap.push_back(index2);
std::push_heap(heap.begin(), heap.end(), Comp);
MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
}
MULTIEXP_PERF(PERF_TIMER_STOP(push));
MULTIEXP_PERF(PERF_TIMER_STOP(sub));
MULTIEXP_PERF(PERF_TIMER_STOP(add));
MULTIEXP_PERF(PERF_TIMER_STOP(pop));
MULTIEXP_PERF(PERF_TIMER_STOP(loop));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000));
//return rct::scalarmultKey(data[index1].point, data[index1].scalar);
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index1 = heap.back();
heap.pop_back();
ge_p2 p2;
ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
rct::key res;
ge_tobytes(res.bytes, &p2);
return res;
}
rct::key bos_coster_heap_conv_robust(std::vector<MultiexpData> data)
{
MULTIEXP_PERF(PERF_TIMER_START_UNIT(bos_coster, 1000000));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
size_t points = data.size();
CHECK_AND_ASSERT_THROW_MES(points > 0, "Not enough points");
std::vector<size_t> heap;
heap.reserve(points);
for (size_t n = 0; n < points; ++n)
{
if (!(data[n].scalar == rct::zero()) && !ge_p3_is_point_at_infinity(&data[n].point))
heap.push_back(n);
}
points = heap.size();
if (points == 0)
return rct::identity();
auto Comp = [&](size_t e0, size_t e1) { return data[e0].scalar < data[e1].scalar; };
std::make_heap(heap.begin(), heap.end(), Comp);
if (points < 2)
{
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index1 = heap.back();
ge_p2 p2;
ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
rct::key res;
ge_tobytes(res.bytes, &p2);
return res;
}
MULTIEXP_PERF(PERF_TIMER_STOP(setup));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(loop, 1000000));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(pop, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(div, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(div));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(add, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(sub, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(push, 1000000)); MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
while (heap.size() > 1)
{
MULTIEXP_PERF(PERF_TIMER_RESUME(pop));
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index1 = heap.back();
heap.pop_back();
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index2 = heap.back();
heap.pop_back();
MULTIEXP_PERF(PERF_TIMER_PAUSE(pop));
ge_cached cached;
ge_p1p1 p1;
ge_p2 p2;
MULTIEXP_PERF(PERF_TIMER_RESUME(div));
while (1)
{
rct::key s1_2 = div2(data[index1].scalar);
if (!(data[index2].scalar < s1_2))
break;
if (data[index1].scalar.bytes[0] & 1)
{
data.resize(data.size()+1);
data.back().scalar = rct::identity();
data.back().point = data[index1].point;
heap.push_back(data.size() - 1);
std::push_heap(heap.begin(), heap.end(), Comp);
}
data[index1].scalar = div2(data[index1].scalar);
ge_p3_to_p2(&p2, &data[index1].point);
ge_p2_dbl(&p1, &p2);
ge_p1p1_to_p3(&data[index1].point, &p1);
}
MULTIEXP_PERF(PERF_TIMER_PAUSE(div));
MULTIEXP_PERF(PERF_TIMER_RESUME(add));
ge_p3_to_cached(&cached, &data[index1].point);
ge_add(&p1, &data[index2].point, &cached);
ge_p1p1_to_p3(&data[index2].point, &p1);
MULTIEXP_PERF(PERF_TIMER_PAUSE(add));
MULTIEXP_PERF(PERF_TIMER_RESUME(sub));
sc_sub(data[index1].scalar.bytes, data[index1].scalar.bytes, data[index2].scalar.bytes);
MULTIEXP_PERF(PERF_TIMER_PAUSE(sub));
MULTIEXP_PERF(PERF_TIMER_RESUME(push));
if (!(data[index1].scalar == rct::zero()))
{
heap.push_back(index1);
std::push_heap(heap.begin(), heap.end(), Comp);
}
heap.push_back(index2);
std::push_heap(heap.begin(), heap.end(), Comp);
MULTIEXP_PERF(PERF_TIMER_PAUSE(push));
}
MULTIEXP_PERF(PERF_TIMER_STOP(push));
MULTIEXP_PERF(PERF_TIMER_STOP(sub));
MULTIEXP_PERF(PERF_TIMER_STOP(add));
MULTIEXP_PERF(PERF_TIMER_STOP(pop));
MULTIEXP_PERF(PERF_TIMER_STOP(loop));
MULTIEXP_PERF(PERF_TIMER_START_UNIT(end, 1000000));
//return rct::scalarmultKey(data[index1].point, data[index1].scalar);
std::pop_heap(heap.begin(), heap.end(), Comp);
size_t index1 = heap.back();
heap.pop_back();
ge_p2 p2;
ge_scalarmult(&p2, data[index1].scalar.bytes, &data[index1].point);
rct::key res;
ge_tobytes(res.bytes, &p2);
return res;
}
#define STRAUS_C 4
struct straus_cached_data
{
#ifdef RAW_MEMORY_BLOCK
size_t size;
ge_cached *multiples;
straus_cached_data(): size(0), multiples(NULL) {}
~straus_cached_data() { aligned_free(multiples); }
#else
std::vector<std::vector<ge_cached>> multiples;
#endif
};
#ifdef RAW_MEMORY_BLOCK
#ifdef ALTERNATE_LAYOUT
#define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)*((1<<STRAUS_C)-1)+((digit)-1)]
#else
#define CACHE_OFFSET(cache,point,digit) cache->multiples[(point)+cache->size*((digit)-1)]
#endif
#else
#ifdef ALTERNATE_LAYOUT
#define CACHE_OFFSET(cache,point,digit) local_cache->multiples[j][digit-1]
#else
#define CACHE_OFFSET(cache,point,digit) local_cache->multiples[digit][j]
#endif
#endif
std::shared_ptr<straus_cached_data> straus_init_cache(const std::vector<MultiexpData> &data, size_t N)
{
MULTIEXP_PERF(PERF_TIMER_START_UNIT(multiples, 1000000));
if (N == 0)
N = data.size();
CHECK_AND_ASSERT_THROW_MES(N <= data.size(), "Bad cache base data");
ge_p1p1 p1;
ge_p3 p3;
std::shared_ptr<straus_cached_data> cache(new straus_cached_data());
#ifdef RAW_MEMORY_BLOCK
const size_t offset = cache->size;
cache->multiples = (ge_cached*)aligned_realloc(cache->multiples, sizeof(ge_cached) * ((1<<STRAUS_C)-1) * std::max(offset, N), 4096);
CHECK_AND_ASSERT_THROW_MES(cache->multiples, "Out of memory");
cache->size = N;
for (size_t j=offset;j<N;++j)
{
ge_p3_to_cached(&CACHE_OFFSET(cache, j, 1), &data[j].point);
for (size_t i=2;i<1<<STRAUS_C;++i)
{
ge_add(&p1, &data[j].point, &CACHE_OFFSET(cache, j, i-1));
ge_p1p1_to_p3(&p3, &p1);
ge_p3_to_cached(&CACHE_OFFSET(cache, j, i), &p3);
}
}
#else
#ifdef ALTERNATE_LAYOUT
const size_t offset = cache->multiples.size();
cache->multiples.resize(std::max(offset, N));
for (size_t i = offset; i < N; ++i)
{
cache->multiples[i].resize((1<<STRAUS_C)-1);
ge_p3_to_cached(&cache->multiples[i][0], &data[i].point);
for (size_t j=2;j<1<<STRAUS_C;++j)
{
ge_add(&p1, &data[i].point, &cache->multiples[i][j-2]);
ge_p1p1_to_p3(&p3, &p1);
ge_p3_to_cached(&cache->multiples[i][j-1], &p3);
}
}
#else
cache->multiples.resize(1<<STRAUS_C);
size_t offset = cache->multiples[1].size();
cache->multiples[1].resize(std::max(offset, N));
for (size_t i = offset; i < N; ++i)
ge_p3_to_cached(&cache->multiples[1][i], &data[i].point);
for (size_t i=2;i<1<<STRAUS_C;++i)
cache->multiples[i].resize(std::max(offset, N));
for (size_t j=offset;j<N;++j)
{
for (size_t i=2;i<1<<STRAUS_C;++i)
{
ge_add(&p1, &data[j].point, &cache->multiples[i-1][j]);
ge_p1p1_to_p3(&p3, &p1);
ge_p3_to_cached(&cache->multiples[i][j], &p3);
}
}
#endif
#endif
MULTIEXP_PERF(PERF_TIMER_STOP(multiples));
return cache;
}
size_t straus_get_cache_size(const std::shared_ptr<straus_cached_data> &cache)
{
size_t sz = 0;
#ifdef RAW_MEMORY_BLOCK
sz += cache->size * sizeof(ge_cached) * ((1<<STRAUS_C)-1);
#else
for (const auto &e0: cache->multiples)
sz += e0.size() * sizeof(ge_cached);
#endif
return sz;
}
rct::key straus(const std::vector<MultiexpData> &data, const std::shared_ptr<straus_cached_data> &cache, size_t STEP)
{
CHECK_AND_ASSERT_THROW_MES(cache == NULL || cache->size >= data.size(), "Cache is too small");
MULTIEXP_PERF(PERF_TIMER_UNIT(straus, 1000000));
STEP = STEP ? STEP : 192;
MULTIEXP_PERF(PERF_TIMER_START_UNIT(setup, 1000000));
static constexpr unsigned int mask = (1<<STRAUS_C)-1;
std::shared_ptr<straus_cached_data> local_cache = cache == NULL ? straus_init_cache(data) : cache;
ge_cached cached;
ge_p1p1 p1;
#ifdef TRACK_STRAUS_ZERO_IDENTITY
MULTIEXP_PERF(PERF_TIMER_START_UNIT(skip, 1000000));
std::vector<uint8_t> skip(data.size());
for (size_t i = 0; i < data.size(); ++i)
skip[i] = data[i].scalar == rct::zero() || ge_p3_is_point_at_infinity(&data[i].point);
MULTIEXP_PERF(PERF_TIMER_STOP(skip));
#endif
MULTIEXP_PERF(PERF_TIMER_START_UNIT(digits, 1000000));
#if STRAUS_C==4
std::unique_ptr<uint8_t[]> digits{new uint8_t[64 * data.size()]};
#else
std::unique_ptr<uint8_t[]> digits{new uint8_t[256 * data.size()]};
#endif
for (size_t j = 0; j < data.size(); ++j)
{
const unsigned char *bytes = data[j].scalar.bytes;
#if STRAUS_C==4
unsigned int i;
for (i = 0; i < 64; i += 2, bytes++)
{
digits[j*64+i] = bytes[0] & 0xf;
digits[j*64+i+1] = bytes[0] >> 4;
}
#elif 1
unsigned char bytes33[33];
memcpy(bytes33, data[j].scalar.bytes, 32);
bytes33[32] = 0;
bytes = bytes33;
for (size_t i = 0; i < 256; ++i)
digits[j*256+i] = ((bytes[i>>3] | (bytes[(i>>3)+1]<<8)) >> (i&7)) & mask;
#else
rct::key shifted = data[j].scalar;
for (size_t i = 0; i < 256; ++i)
{
digits[j*256+i] = shifted.bytes[0] & 0xf;
shifted = div2(shifted, (256-i)>>3);
}
#endif
}
MULTIEXP_PERF(PERF_TIMER_STOP(digits));
rct::key maxscalar = rct::zero();
for (size_t i = 0; i < data.size(); ++i)
if (maxscalar < data[i].scalar)
maxscalar = data[i].scalar;
size_t start_i = 0;
while (start_i < 256 && !(maxscalar < pow2(start_i)))
start_i += STRAUS_C;
MULTIEXP_PERF(PERF_TIMER_STOP(setup));
ge_p3 res_p3 = ge_p3_identity;
for (size_t start_offset = 0; start_offset < data.size(); start_offset += STEP)
{
const size_t num_points = std::min(data.size() - start_offset, STEP);
ge_p3 band_p3 = ge_p3_identity;
size_t i = start_i;
if (!(i < STRAUS_C))
goto skipfirst;
while (!(i < STRAUS_C))
{
ge_p2 p2;
ge_p3_to_p2(&p2, &band_p3);
for (size_t j = 0; j < STRAUS_C; ++j)
{
ge_p2_dbl(&p1, &p2);
if (j == STRAUS_C - 1)
ge_p1p1_to_p3(&band_p3, &p1);
else
ge_p1p1_to_p2(&p2, &p1);
}
skipfirst:
i -= STRAUS_C;
for (size_t j = start_offset; j < start_offset + num_points; ++j)
{
#ifdef TRACK_STRAUS_ZERO_IDENTITY
if (skip[j])
continue;
#endif
#if STRAUS_C==4
const uint8_t digit = digits[j*64+i/4];
#else
const uint8_t digit = digits[j*256+i];
#endif
if (digit)
{
ge_add(&p1, &band_p3, &CACHE_OFFSET(local_cache, j, digit));
ge_p1p1_to_p3(&band_p3, &p1);
}
}
}
ge_p3_to_cached(&cached, &band_p3);
ge_add(&p1, &res_p3, &cached);
ge_p1p1_to_p3(&res_p3, &p1);
}
rct::key res;
ge_p3_tobytes(res.bytes, &res_p3);
return res;
}
size_t get_pippenger_c(size_t N)
{
if (N <= 13) return 2;
if (N <= 29) return 3;
if (N <= 83) return 4;
if (N <= 185) return 5;
if (N <= 465) return 6;
if (N <= 1180) return 7;
if (N <= 2295) return 8;
return 9;
}
struct pippenger_cached_data
{
size_t size;
ge_cached *cached;
pippenger_cached_data(): size(0), cached(NULL) {}
~pippenger_cached_data() { aligned_free(cached); }
};
std::shared_ptr<pippenger_cached_data> pippenger_init_cache(const std::vector<MultiexpData> &data, size_t start_offset, size_t N)
{
MULTIEXP_PERF(PERF_TIMER_START_UNIT(pippenger_init_cache, 1000000));
CHECK_AND_ASSERT_THROW_MES(start_offset <= data.size(), "Bad cache base data");
if (N == 0)
N = data.size() - start_offset;
CHECK_AND_ASSERT_THROW_MES(N <= data.size() - start_offset, "Bad cache base data");
std::shared_ptr<pippenger_cached_data> cache(new pippenger_cached_data());
cache->size = N;
cache->cached = (ge_cached*)aligned_realloc(cache->cached, N * sizeof(ge_cached), 4096);
CHECK_AND_ASSERT_THROW_MES(cache->cached, "Out of memory");
for (size_t i = 0; i < N; ++i)
ge_p3_to_cached(&cache->cached[i], &data[i+start_offset].point);
MULTIEXP_PERF(PERF_TIMER_STOP(pippenger_init_cache));
return cache;
}
size_t pippenger_get_cache_size(const std::shared_ptr<pippenger_cached_data> &cache)
{
return cache->size * sizeof(*cache->cached);
}
rct::key pippenger(const std::vector<MultiexpData> &data, const std::shared_ptr<pippenger_cached_data> &cache, size_t cache_size, size_t c)
{
if (cache != NULL && cache_size == 0)
cache_size = cache->size;
CHECK_AND_ASSERT_THROW_MES(cache == NULL || cache_size <= cache->size, "Cache is too small");
if (c == 0)
c = get_pippenger_c(data.size());
CHECK_AND_ASSERT_THROW_MES(c <= 9, "c is too large");
ge_p3 result = ge_p3_identity;
bool result_init = false;
std::unique_ptr<ge_p3[]> buckets{new ge_p3[1<<c]};
bool buckets_init[1<<9];
std::shared_ptr<pippenger_cached_data> local_cache = cache == NULL ? pippenger_init_cache(data) : cache;
std::shared_ptr<pippenger_cached_data> local_cache_2 = data.size() > cache_size ? pippenger_init_cache(data, cache_size) : NULL;
rct::key maxscalar = rct::zero();
for (size_t i = 0; i < data.size(); ++i)
{
if (maxscalar < data[i].scalar)
maxscalar = data[i].scalar;
}
size_t groups = 0;
while (groups < 256 && !(maxscalar < pow2(groups)))
++groups;
groups = (groups + c - 1) / c;
for (size_t k = groups; k-- > 0; )
{
if (result_init)
{
ge_p2 p2;
ge_p3_to_p2(&p2, &result);
for (size_t i = 0; i < c; ++i)
{
ge_p1p1 p1;
ge_p2_dbl(&p1, &p2);
if (i == c - 1)
ge_p1p1_to_p3(&result, &p1);
else
ge_p1p1_to_p2(&p2, &p1);
}
}
memset(buckets_init, 0, 1u<<c);
// partition scalars into buckets
for (size_t i = 0; i < data.size(); ++i)
{
unsigned int bucket = 0;
for (size_t j = 0; j < c; ++j)
if (test(data[i].scalar, k*c+j))
bucket |= 1<<j;
if (bucket == 0)
continue;
CHECK_AND_ASSERT_THROW_MES(bucket < (1u<<c), "bucket overflow");
if (buckets_init[bucket])
{
if (i < cache_size)
add(buckets[bucket], local_cache->cached[i]);
else
add(buckets[bucket], local_cache_2->cached[i - cache_size]);
}
else
{
buckets[bucket] = data[i].point;
buckets_init[bucket] = true;
}
}
// sum the buckets
ge_p3 pail;
bool pail_init = false;
for (size_t i = (1<<c)-1; i > 0; --i)
{
if (buckets_init[i])
{
if (pail_init)
add(pail, buckets[i]);
else
{
pail = buckets[i];
pail_init = true;
}
}
if (pail_init)
{
if (result_init)
add(result, pail);
else
{
result = pail;
result_init = true;
}
}
}
}
rct::key res;
ge_p3_tobytes(res.bytes, &result);
return res;
}
}